Evidence of diagnosis and screening

MMM www.ww www.ww

Objectives

- This presentation aims to increase the paticipants' knowledge to appraise diagnostic articles and to calculate the pre & posttest probability for a laboratory test to diagnose common problems in clinical practice.
- * At the end of this session, the participants are expected to;
 - * Discuss diagnostic test characteristics: Sensitivity, Specificity, Predictive values, Likelihood ratios
 - Discuss-pre and post-test probabilities and the use of the Fagan's nomogram
 - Discuss the use of QUADAS-2 for assessing quality of a diagnostic test
 - * Explain the place of ROC analysis in diagnostic tests

Technical vs. Clinical Precision

- * "Baby Jeff": The case of screening for muscular dystrophy at Harrisburg Hospital
- * Technical Precision of CPK test:
 - * Sensitivity: 100%
 - * Specificity: 99.98%

***But**,

• The prevalence of MD is 1 in 5000 (0.02%)

Ways to remember Sensitivity and Specificity

SENSITIVITY

- * PID positive in disease
- * SnNOut: Tests with a high sensitivity rule OUT the disease

SPECIFICITY

- * NIH Negative in health
- * SpPIn: Tests with a high specificity rule IN the disease

Does Baby Jeff have M.D.?

Of 100,000 males, 20 will have M.D.

(1 in 5,000, or 0.02% prevalence)

 The test will correctly identify all 20 who have the disease (sensitivity = 100%)

Does Baby Jeff have M.D.?

- * Of the 99,980 without M.D.
 - * Specificity = 99.98%
 - * 99,980 x 0.9998 = 99,960 will be negative
 - * Hence, false positives = 20

"... The Rest of the Story"

- * Therefore,
 - * Out of 100,000 infants, **20** will be truly positive, while **20** will be false positive
 - * Positive predictive value = 50%
 - The child with a positive screening test only has a 50/50 chance of actually having MD!

Bayes theorem

- Decisions we are giving are based on previous assumptions
 - * Imagine: 5 year old child coming with 38 $^\circ\,$ C axillary temp.
 - * If you are a doctor in Zambia, your most probable diagnosis may be **malaria** http://www.rbm.who.int/amd2003/amr2003/ch1.htm
 - If you are a doctor in Georgia, your most probable diagnosis may be common cold
 - * Why?
 - * Malaria prevalence in Zambian children under five is around 60%
 - * Most common cause of fever among European children is common cold

Bayes theorem

- Adapting a theory of conditional probability from the 18th century statistician Thomas Bayes solves the problem of calculating posttest disease probability.
- This theory allows pretest probability to be separated from a term that describes the strength of the diagnostic test—likelihood ratio.

Posttest Odds = Pretest Odds X Likelihood Ratio

Likelihood Ratio

- Converts a pre-test probability to a post-test probability
- * Compares the likelihood of a positive result in someone with the disease as compared with someone without the disease (or vice-versa)
- * Incorporates both sensitivity and specificity

LR⁺=*Sensitivity/(1-Specifity)*=*1/(1-0.9998)*=*5000*

Likelihood Ratio

- Clinically more useful than sensitivity and specificity
- * Can be used to calculate the probability of disease in a patient (the clinical question)
- * Positive LR
 - * How many times more likely the test is positive in patients with the disease than those without the disease?
- * Negative LR
 - * How many times more likely the test is negative in patients with the disease than those without the disease?

Likelihood Ratio

Qualitative Strength	LR(+)	LR(-)
Excellent	10	0.1
Very good	6	0.2
Fair	2	0.5
Useless	1	1

Online Calculator

* You may use online calculators

Diagnostic Test Calculator

This calculator can determine diagnostic test characteristics (sensitivity, specificity, likelihood ratios) and/or determine the post-test probability of disease given given the preand test characteristics. Given sample sizes, confidence intervals are also computed.

Fill out one of the sections below on the left, and then click on the 'Compute' button. Sections you don't fill out will be computed for you, and the nomogram on the right will probability that a patient has the disease after a positive or negative test.

Numbers of patients with and without the disease who test positive and negative:

	Disease present	Disease absent	Total
Test positive	2	2	4
Test negative	0	9996	9996
Total	2	9998	10000

Compute

or

disease prevalence, test sensitivity, and test specificity (and, optionally, sample size):

Prevalence (e.g. 0.10):	0.000200
Sensitivity (e.g. 0.80):	1.000
Specificity (e.g. 0.80):	1.000
Total sample size:	10000

http://araw.mede.uic.edu/cgi-bin/testcalc.pl

Key message

- * The value of a test in clinical practice depends on:
 - * its sensitivity!
 - * its specifity!
 - * the prevalence of the given disease in the relevant context!
 - * other tests/information available

Prevalence and Predictive Values

Prevalence (%)	Positive predictive value (%)	Negative predictive value (%)
5	40	99
10	62	98
20	76	95
40	89	87
50	93	82
60	96	76

Akobeng 2007, Acta Pediatrica https://onlinelibrary.wiley.com/doi/full/10.1111/j.1651-2227.2006.00180.x

https://neonatalsepsiscalculator.kaise rpermanente.org/

Vitals

Routine

Routine

Vitals per

Vitals

NICU

Vitals

Incidence of Early-Onset	0.3/1000 live births (KPNC incidence -			
Sepsis 😢		Risk per 1000/births		
Gestational age 2	41Image: Original conditionsImage: Weeks1Image: Original conditionImage: Original condition	EOS Risk @ Birth		0.19
Highest maternal	38 Celsius 🔻	EOS Bick after Clinical Evam	Risk per	Clinical
antepartum temperature			1000/births	Recommendation
ROM (Hours) 🥑	4 ©	Well Appearing	0.08	No culture, no antibiotics
Maternal GBS status 😢	Negative	Equivocal	0.96	No culture, no antibiotics
	 Positive Unknown 	Clinical Illness	4.05	Empiric antibiotics
Type of intrapartum antibiotics (2)	 Broad spectrum antibiotics > 4 hrs prior to birth Broad spectrum antibiotics 2-3.9 hrs prior to birth GBS specific antibiotics > 2 hrs prior to birth No antibiotics or any antibiotics < 2 	Classification of Infant's Clinical Present	ation Clinical Illness	Equivocal Well Appearing
	hrs prior to birth			

Risk per 1000/births				
EOS Risk @ Birth	0.32			
EOS Risk after Clinical Exam	Risk per 1000/births	Clinical Recommendation	Vitals	
Well Appearing	0.13	No culture, no antibiotics	Routine Vitals	
Equivocal	1.60	Blood culture	Vitals every 4 hours for 24 hours	
Clinical Illness	6.75	Empiric antibiotics	Vitals per NICU	

Classification of Infant's Clinical Presentation Clinical Illness Equivocal Well Appearing

If you have a continuous outcome

- * Defining a threshold levels may help you deciding
- * Receiver operating characteristic curves may be used

The role of C-reactive protein to lymphocyte ratio in the differentiation of acute and perforated appendicitis

* A CRP/lymphocyte ratio cut-off value of 0.4 in predicting PA:

Table 2. ROC curve analyses of CLR					
	Value	Lower	Upper		
Sensitivity	0.700	0.457	0.881		
Specificity	0.964	0.910	0.990		
Positive Predictive Value	0.78	0.57	0.92		
Negative Predictive Value	0.95	0.87	0.99		
Positive Likelihood Ratio	19.4	7.2	53		
Negative Likelihood Ratio	0.3	0.16	0.61		

CLR: CRP/lymphocyte ratio.

https://jag.journalagent.com/travma/pdfs/UTD-47973-CLINICAL ARTICLE-KOYUNCU.pdf

Figure 2. ROC analysis in the evaluation of PA (CLR: (CRP/lymphocyte ratio)x100; CRP: C-reactive protein; NLR: neutrophil/lymphocyte ratio).

QUADAS-2

* QUADAS-2: A Revised Tool for the Quality Assessment of DiagnosticAccuracy Studies

Table 2. Suggested Tabular Presentation for QUADAS-2 Results

Study	Risk of Bias			Applicability Concerns			
	Patient Selection	Index Test	Reference Standard	Flow and Timing	Patient Selection	Index Test	Reference Standard
1	٢	٢	٢	٢	8	٢	٢
2	٢	٢	٢	٢	8	٢	٢
3	8	8	٢	٢	8	٢	٢
4	8	8	٢	٢	\otimes	٢	٢
5	8	?	٢	٢	8	٢	٢
6	\otimes	?	٢	٢	8	?	٢
7	\otimes	?	٢	٢	8	٢	٢
8	\otimes	?	٢	٢	8	?	٢
9	\otimes	?	٢	٢	\otimes	٢	٢
10	\otimes	?	٢	\otimes	\otimes	٢	٢
11	٢	?	٢	8	٢	٢	٢

 \odot = low risk; \otimes = high risk; ? = unclear risk.

https://www.acpjournals.org/doi/10.7326/0003-4819-155-8-201110180-00009?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed&

Assessing the validity of diagnostic tests

- Four domains
 - Patient selection
 - * Risk of bias and concerns regarding applicability
 - * Index test
 - * Risk of bias and concerns regarding applicability
 - Reference standard
 - * Risk of bias and concerns regarding applicability
 - * Flow and timing
 - * Only risk of bias

Patient (Participant) Selection

- * Was a consecutive or random sample of patients enrolled?
- * Was a case–control design avoided?
- * Did the study avoid inappropriate exclusions?

Index Test

* Were the index test results interpreted without knowledge of the results of the reference standard?

* If a threshold was used, was it prespecified?

Reference Standard

- * Was an independent gold-standard test used?
- * Is the reference standard likely to correctly classify the target condition?
- Were the reference standard results interpreted without knowledge of the results of the index test (blinded)?

Patient Flow and Timing

- * Was there an appropriate interval between index tests and reference standard?
- Did all patients receive a reference standard (Was it applied to all patients, irrespective of the results of the diagnostic test)?
- * Did all patients receive the same reference standard?
- * Were all patients included in the analysis?

Applicability

- * Are there concerns that the following do not match the review question?
- Included patients was the diagnostic test evaluated in an appropriate spectrum of patients (not just florid or asymptomatic patients)?
- * Index test, its conduct, or interpretation
- * Reference standard

Summary

- Discuss diagnostic test characteristics: Sensitivity,
 Specificity, Predictive values, Likelihood ratios
- Discuss-pre and post-test probabilities and the use of the Fagan's nomogram
- Discuss the use of QUADAS-2 for assessing quality of a diagnostic test
- * Explain the place of ROC analysis in diagnostic tests